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Flavor symmetry breaking and strangeness in the nucleon
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Abstract. We suggest that breaking of SU(3) flavor symmetry mainly resides in the baryon wave functions
while the charge operators have no (or only small) explicit symmetry-breaking components. We utilize the
collective coordinate approach to chiral soliton models to support this picture. In particular we compute
the gA/gV ratios for hyperon beta-decay and the strangeness contribution to the nucleon axial current
matrix elements and analyze their variation with increasing flavor symmetry breaking.

PACS. 12.39.Dc Skyrmions – 12.39.Fe Chiral Lagrangians – 13.30.Ce Leptonic, semileptonic, and radiative
decays – 14.20.Jn Hyperons

1 Introduction and motivation

There has been much interest in the strangeness content
of the nucleon ever since the analysis of the DIS data [1]
suggested a large (negative) polarization of strange quarks
in the nucleon [2,3], �SN ≈ −0.15. This surprising re-
sult particularly relies on the assumption of flavor co-
variance for the axial current matrix elements of the 1

2

+

baryons. This assumption originates from the feature that
the Cabibbo scheme [4], that utilizes the F&D parame-
terization for the flavor changing axial charges, works un-
expectedly well [5] as the comparison in table 1 shows.

Here we will investigate in how far this agreement
justifies to carry over flavor covariance to strangeness-
conserving axial current matrix elements in order to dis-
entangle the various quark flavor components of the nu-
cleon axial current matrix element. This investigation re-
quires baryon axial current matrix elements as functions
of the (effective) strength of flavor symmetry breaking.
This can be achieved within the three-flavor version of
the Skyrme model (and generalizations thereof) in which
baryons emerge as solitons. In such models baryon states
are constructed by quantizing the large amplitude fluc-
tuations about the soliton and constructing exact eigen-
states in the presence of symmetry breaking. We focus
on a picture where symmetry breaking mainly resides in
the baryon wave functions, including important contribu-
tions which would be missed in a first-order treatment.
In contrast, we assume that the current operators, from
which the charges are computed, are dominated by flavor
covariant components. In a first step we do not specify
the model Lagrangian but adjust the prefactors of the few
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Table 1. The empirical values for the gA/gV ratios of hyperon
beta-decays [6], see also [5]. For Σ → Λ only gA is given. Also
the flavor symmetric predictions are presented using F = 0.459
and D = 0.799. Analytic expressions which relate these param-
eters to the gA/gV ratios may e.g. be found in table I of [7].

Λ → p Σ → n Ξ → Λ

Empirical 0.718 ± 0.015 0.340 ± 0.017 0.25 ± 0.05
F&D 0.725 ± 0.009 0.339 ± 0.026 0.19 ± 0.02

Ξ → Σ Σ → Λ

Empirical 1.287 ± 0.158 0.61 ± 0.02
F&D 1.258 = gA 0.65 ± 0.01

possible flavor covariant components of the axial current
operator to observables in hyperon beta-decay and ana-
lyze their matrix elements as functions of flavor symmetry
breaking. We also present results obtained from a realistic
vector meson soliton model that supports the suggested
picture. Details omitted here may be traced from ref [8].

2 Symmetry breaking in the baryon wave
functions

The collective coordinates A that parameterize the large
amplitude fluctuations off the soliton are introduced via

U(r, t) = A(t)U0(r)A†(t) , A(t) ∈ SU(3) . (1)

U0(r) describes the soliton embedded in the isospin sub-
group. A prototype model Lagrangian for U(r, t) consists
of the Skyrme model supplemented by the Wess-Zumino-
Witten term and suitable symmetry-breaking pieces. We
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parameterize the collective coordinates by “Euler angles”

A = D2(Î) e−iνλ4D2(R̂) e−i(ρ/
√

3)λ8 . (2)

Here D2 denote the rotation matrices for rotations in
isospace (Î) and coordinate space (R̂). Substituting (1)
into the model Lagrangian yields upon canonical quanti-
zation the Hamiltonian for the collective coordinates A:

H = Hs + 3
4 γ sin

2ν . (3)

The symmetric piece of this collective Hamiltonian only
contains Casimir operators and may be expressed in terms
of the SU(3)-right generators Ra (a = 1, . . . , 8):

Hs =Mcl +
1
2α2

3∑
i=1

R2
i +

1
2β2

7∑
α=4

R2
α . (4)

Mcl, α
2, β2 and γ are functionals of the soliton, U0(r). The

generators Ra can be expressed in terms of derivatives
with respect to the “Euler angles”. The essential feature
of the parameterization (2) is that the flavor-symmetry-
breaking part of the full Hamiltonian (3) only depends
on the flavor-changing angle ν. Therefore the eigenvalue
problemHΨ = εΨ reduces to ordinary second-order differ-
ential equations for isoscalar functions which only depend
on ν [9]. Solely the product ω2 = 3

2γβ
2 appears in these

differential equations as the effective strength of symmetry
breaking on which the eigenfunctions of H depend para-
metrically. A value in the range 5 � ω2 � 8 is required to
obtain reasonable agreement with the empirical mass dif-
ferences for the 1

2

+ and 3
2

+ baryons [10]. Such large a value
for ω2 is without reach of a perturbation expansion as the
resulting baryon wave functions exhibit strong distortion
from flavor covariance.

3 Charge operators

In the soliton description the effect of the derivative-type
symmetry-breaking terms is mainly indirect. They pro-
vide the splitting between the various decay constants
and thus increase γ since it is proportional to f2

Km
2
K −

f2
πm

2
π ≈ 1.5f2

π(m
2
K − m2

π). Otherwise, the derivative-
type symmetry-breaking terms are negligible. Whence
symmetry-breaking terms can be omitted in the current
operators and the non-singlet axial charge operator is pa-
rameterized as (a = 1, . . . , 8, i = 1, 2, 3)

∫
d3rA

(a)
i = c1Dai−c2Da8Ri+c3

7∑
α,β=4

diαβDaαRβ , (5)

where Dab = 1
2 tr

(
λaAλbA

†). For ω2 → ∞ (infinitely
heavy strange degrees of freedom) the strangeness contri-
bution to the nucleon axial charge should vanish. Noting
that 〈N |D83|N〉 → 0 and 〈N |∑7

α,β=4 d3αβD8αRβ |N〉 → 0
while 〈N |D88|N〉 → 1 for ω2 → ∞, we demand

∫
d3rA

(0)
i = −2

√
3c2Ri , i = 1, 2, 3 (6)

for the axial singlet current because it leads to the strange-
ness projection, A(s)

i = (A(0)
i − 2

√
3A(8)

i )/3 that vanishes
for ω2 → ∞. Actually all model calculations in the lit-
erature [11,12] are consistent with this relation between
singlet and octet currents. The singlet current matrix el-
ement, �ΣB =

√
3c2, is the quark spin contribution to

the spin of the considered baryon, B. It is well known
that the empirical value for the nucleon matrix element,
�ΣN ≈ 0.20 ± 0.10 [3] is insensitive to the strength of
flavor symmetry breaking [13]. This suggests to adjust c2
accordingly. In order to completely describe the hyperon
beta-decays we also demand matrix elements of the vector
charges. These are obtained from the operator

∫
d3rV

(a)
0 =

8∑
b=1

DabRb = La, (7)

which introduces the SU(3)-left generators La.
The values for gA and gV (only gA for Σ+ → Λe+νe)

are obtained from the matrix elements of the operators
in eqs (5) and (7), respectively, sandwiched between the
eigenstates of the full Hamiltonian (3). We still have to
specify c1 and c3. We determine these two parameters
such that nucleon axial charge, gA and the gA/gV ratio
for Λ → pe−ν̄e are reproduced1 at a prescribed strength
of flavor symmetry breaking, ω2

fix = 6.0. Then we are not
only left with predictions for the other decay parameters
but we can in particular study the variation with sym-
metry breaking. This is shown in fig. 1. The dependence
on flavor symmetry breaking is very moderate2 and the
results can be viewed as reasonably agreeing with the em-
pirical data, cf. table 1. The observed independence of ω2

shows that these predictions are not sensitive to the choice
of ω2

fix. The two transitions, n → p and Λ → p, which are
not shown in fig. 1, exhibit a similar negligible dependence
on ω2. We therefore have a two parameter (c1 and c3, c2
is fixed from ∆ΣN ) fit of the hyperon beta-decays. Com-
paring the results in fig. 1 with the data in table 1 we see
that the present calculation using the strongly distorted
wave functions agrees equally well with the empirical data
as the flavor-symmetric F&D fit. On the other hand, the
strangeness contribution to the nucleon axial current ma-
trix element reduces from �SN ≈ −0.13 in the symmetric
treatment to �SN ≈ −0.07 in the realistic case.

4 Model calculation

We consider a realistic soliton model containing pseudo-
scalar and vector meson fields. It has been established for
two flavors in ref. [14] and been extended to three flavors in
ref. [11] where it has been shown to fairly well describe the
parameters of hyperon beta-decay (cf. table 4 in ref. [11]).
The model Lagrangian contains terms which involve the

1 In this section we will not address the problem of the too
small model prediction for gA.

2 However, the individual matrix elements entering the ratios
gA/gV vary strongly with ω2 [8].
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Fig. 1. The predicted decay parameters for the hyperon beta-decays using ω2
fix = 6.0. The errors originating from those in

∆ΣN are indicated.

Levi-Cevita tensor εµνρσ, to accommodate processes like
ω → 3π [15]. Such terms contribute to c2 and c3. A mini-
mal set of symmetry-breaking terms is included [16] to ac-
count for different masses and decay constants. They add
symmetry-breaking pieces to the axial charge operator,

δA
(a)
i = c4Da8D8i + c5

7∑
α,β=4

diαβDaαD8β

+c6Dai(D88 − 1) ,

δA
(0)
i = 2

√
3 c4D8i .

Unfortunately the model parameters cannot be completely
determined in the meson sector [14]. We use the remaining
freedom to accommodate baryon properties in three dif-
ferent ways as shown in table 2. The set denoted by “b.f.”
refers to a best fit to the baryon spectrum. It predicts the
axial charge somewhat on the low side, gA = 0.88. The
entry “mag. mom.” labels parameters that yield magnetic
moments close to the empirical data (with gA = 0.98) and
finally the set labeled “gA” reproduces the axial charge
of the nucleon [11]. We observe that in particular the
strangeness projection of the nucleon axial current is very
small and depends only mildly on the model parameters.
This confirms the above conclusion from the general
structure of the axial current matrix elements that the
strangeness admixture in the nucleon is significantly
smaller than an analysis based on flavor covariance sug-
gests. Also the predictions for the axial properties of the

Table 2. Quark spin content of the nucleon and the Λ in the
realistic vector meson model. Three sets of model parameters
are considered, see text.

N

∆U ∆D ∆S ∆Σ

b.f. 0.603 −0.279 −0.034 0.291
mag. mom. 0.636 −0.341 −0.030 0.265

gA 0.748 −0.476 −0.016 0.256

Λ

∆U = ∆D ∆S ∆Σ

b.f. −0.155 0.567 0.256
mag. mom. −0.166 0.570 0.238

gA −0.164 0.562 0.233

Λ hyperon are quite insensitive to the model parameters.
Sizable polarizations of the up and down quarks in the
Λ are predicted; comparable to those obtained from the
SU(3) analysis [17] of the available data.

5 Conclusions

We have suggested a picture for the axial charges of the
low-lying 1

2

+ baryons which manages to reasonably repro-
duce the empirical data without introducing (significant)
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flavor-symmetry-breaking components in the correspond-
ing operators. Rather, a sizable symmetry breaking, as
demanded by the baryon spectrum, resides almost com-
pletely in the baryon wave functions. In this picture the
empirical data for hyperon beta-decay are as reasonably
reproduced as in the Cabibbo scheme. We emphasize that
the present picture is not a re-application of the Cabibbo
scheme since here the “octet” baryon wave functions have
significant admixture of higher-dimensional representa-
tions. Especially, when compared with the flavor-covariant
treatment, the present approach predicts a sizable sup-
pression of strangeness in the nucleon.

This work is supported by the Deutsche Forschungsgemein-
schaft (DFG) under contract We 1254/3-2.
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